应数教研室
当前位置: 首页 >> 师资队伍 >> 应数教研室 >> 正文
【教师】尚海锋
发布时间:2023-03-08 14:11   浏览:

尚海锋

一、基本资料

undefined 


19821月生,男,汉族,山东莱芜人,中共党员,教授,博士。

 

二、教育背景与工作经历

20069-20105月:大连理工大学,博士

20105-20231月:河南理工大学,教师

20232月至今:东北大学秦皇岛分校,教师

三、主讲课程和研究方向

本科生课程:

偏微分方程、高等数学、数学物理方程、线性代数

研究生课程:

不可压缩流导论、数学物理方程、二阶抛物型偏微分方程、偏微分方程、数学学科前沿进展

研究方向:

流体力学方程、非线性抛物方程

四、主要成果和荣誉

主要论文:

[1] Lihua Deng, Haifeng Shang, Global regularity for the micropolar Rayleigh-Bénard problem with only velocity dissipation, Proc. Roy. Soc. Edinburgh Sect. A, 152 (5) (2022), 1109-1138.

[2] Haifeng Shang, Yaru Zhai, Stability and large time decay for the three dimensional anisotropic magnetohydrodynamic equations, Z. Angew. Math. Phys., 73 (2) (2022), Article 71.

[3] Haifeng Shang, Mengyu Guo, Global regularity for the 2D micropolar Rayleigh-Bénard problem with partial dissipation, Appl. Math. Lett., 128 (2022), Article 107899.

[4] Zhaoxia Li, Lihua Deng, Haifeng Shang, Global well-posedness and large time decay for the d-dimensional tropical climate model, AIMS Math., 6 (6) (2021), 5581-5595.

[5] Haifeng Shang, Limin Xu, Stability near hydrostatic equilibrium to the three-dimensional Boussinesq equations with partial dissipation, Z. Angew. Math. Phys., 72 (2) (2021), Article 60.

[6] Lihua Deng, Haifeng Shang, Lower and upper bounds of temporal decay for solutions to n-dimensional hyperviscous Navier-Stokes equations, Nonlinear Anal. Real World Appl., 60 (2021), Article 103313.

[7] Haifeng Shang, Jiahong Wu, Global regularity for 2D fractional magneto-micropolar equations, Math. Z., 297 (2021), 775-802.

[8] Lihua Deng, Haifeng Shang, Global well-posedness for n-dimensional magneto-micropolar equations with hyperdissipation, Appl. Math. Lett., 111 (2021), Article 106610.

[9] Haifeng Shang, Chuanwei Gu, Large time behavior for two-dimensional magneto-micropolar equations with only micro-rotational dissipation and magnetic diffusion, Appl. Math. Lett., 99 (2020), Article 105977.

[10] Haifeng Shang, Global regularity results for the 2D magnetic Bénard problem with fractional dissipation, J. Math. Fluid Mech., 21 (3) (2019), Article 39.

[11] Yana Guo, Haifeng Shang, Global well-posedness for incompressible flow in porous media with partial diffusion or fractional diffusion, ZAMM Z. Angew. Math. Mech., 99 (6) (2019), e201700129.

[12] Haifeng Shang, Ming Li, Global regularity for d-Dimensional micropolar equations with fractional dissipation, Appl. Anal., 98 (9) (2019), 1567-1580.

[13] Haifeng Shang, Chuanwei Gu, Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation, Z. Angew. Math. Phys., 70 (3) (2019), Article 85.

[14] Daoguo Zhou, Zilai Li, Haifeng Shang, Jiahong Wu, Baoquan Yuan, Jiefeng Zhao, Global well-posedness for the 2D fractional Boussinesq Equations in the subcritical case, Pacific J. Math., 298 (1) (2019), 233-255.

[15] Haifeng Shang, Mengmeng Song, Local and global existence for evolutionary p-Laplacian equation with nonlocal source, Differential Integral Equations, 32 (3-4) (2019), 139-168.

[16] Ming Li, Haifeng Shang, Large time decay of solutions for the 3D magneto-micropolar equations, Nonlinear Anal. Real World Appl., 44 (2018), 479-496.

[17] Yana Guo, Haifeng Shang, Global well-posedness of two-dimensional magneto-micropolar equations with partial dissipation, Appl. Math. Comput., 313 (2017), 392-407.

[18] Haifeng Shang, Yana Guo, Mengmeng Song, Global regularity for the supercritical active scalars, Z. Angew. Math. Phys., 68 (3) (2017), Art. 64.

[19] Haifeng Shang, Xuefeng Han, Xiaohong Li, Cauchy problem for degenerate and uniformly parabolic equations with nonlocal source, Appl. Anal., 96 (3) (2017), 441-460.

[20] Haifeng Shang, Jiefeng Zhao, Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion, Nonlinear Anal., 150 (2017), 194-209.

[21] Jingna Li, Haifeng Shang, Jiahong Wu, Xiaojing Xu, Zhuan Ye, Regularity criteria for the 2D Boussinesq equations with supercritical dissipation, Commun. Math. Sci., 14 (2016), 1999-2022.

[22] Dhanapati Adhikari, Chongsheng Cao, Haifeng Shang, Jiahong Wu, Xiaojing Xu, Zhuan Ye, Global regularity results for the 2D Boussinesq equations with partial dissipation, J. Differential Equations, 260 (2) (2016), 1893-1917.

[23] Haifeng Shang, Junling Sun, Lihua Deng, Cauchy problem for doubly singular parabolic equation with gradient source, Math. Nachr., 288 (17-18) (2015), 2109-2128.

[24] Haifeng Shang, Junxiang Cheng, Cauchy problem for doubly degenerate parabolic equation with gradient source, Nonlinear Anal., 113 (2015), 323-338.

[25] Haifeng Shang, Cauchy problem for nonlinear parabolic equations with a gradient term, J. Differential Equations, 257 (8) (2014), 2801-2825.

[26] Haifeng Shang, Global existence and nonexistence for the degenerate and uniformly parabolic equations with gradient term, Proc. Roy. Soc. Edinburgh Sect. A, 143 (3) (2013), 643-668.

[27] Haifeng Shang, Cauchy problem and initial traces for fast diffusion equation with space-dependent source, Z. Angew. Math. Phys., 64 (3) (2013), 785-798.

[28] Haifeng Shang, Doubly nonlinear parabolic equations with measure data, Ann. Mat. Pura Appl., 192 (2) (2013), 273-296.

[29] Haifeng Shang, Local and global existence for evolution p-Laplacian equation with time-dependent source, Appl. Anal., 92 (3) (2013), 562-572.

[30] Haifeng Shang, Cauchy problem for fast diffusion equations with a gradient term, J. Math. Anal. Appl., 396 (1) (2012), 133-144.

[31] Haifeng Shang, Lihua Deng, Local and global existence for quasilinear parabolic systems with a strongly nonlinear source, Nonlinear Anal., 75 (10) (2012), 4014-4024.

[32] Haifeng Shang, Lihua Deng, Cauchy problem for doubly nonlinear parabolic equations with initial data measures, J. Math. Anal. Appl., 387 (2) (2012), 721-740.

[33] Haifeng Shang, Evolution p-Laplacian equations with nonlinear source and measure data, Appl. Anal., 90 (7) (2011), 1141-1149.

[34] Haifeng Shang, On the Cauchy problem for the singular parabolic equations with gradient term, J. Math. Anal. Appl., 378 (2) (2011), 578-591.

[35] Haifeng Shang, Fengquan Li, On the Cauchy problem for the evolution p-Laplacian equations with gradient term and source and measures as initial data, Nonlinear Anal., 72 (7-8) (2010), 3396-3411.

[36] Haifeng Shang, Fengquan Li, Singular parabolic equations with measures as initial data, J. Differential Equations, 247 (6) (2009), 1720-1745.

项目及获奖:

 主持完成国家自然科学基金2项和参与完成国家自然科学基金3项。获河南省自然科学奖三等奖1项,河南省自然科学优秀学术论文一等奖1项、二等奖2项和三等奖2项。

五、主要社会团体兼职

美国数学会《数学评论》(Mathematical Reviews) 评论员

六、联系方式

电子邮箱:shanghaifeng@neuq.edu.cn


上一条:【教研室主任】刘松树 下一条:【教师】刘建波