统计教研室
当前位置: 首页 >> 师资队伍 >> 统计教研室 >> 正文
【教师】范协铨
发布时间:2023-03-08 14:01   浏览:

范协铨

一、基本资料

                  undefined 


198212月生,男,汉族,福建福州人,教授,博士,东北大学硕士生导师。

 

二、教育背景与工作经历

20099- 20138大西洋布列塔尼数学实验室,法国南布列塔尼大学,博士

201310- 20159法国国家信息与自动化研究所和巴黎中央理工大学(现为巴黎萨克雷大学),博士后

20159- 20232天津大学,  副教授

20233至今:东北大学秦皇岛分校, 副教授

三、主讲课程和研究方向

本科生课程:

概率论数理统计生物统计学、高等数学、线性代数

研究方向:

     概率论和数理统计极限理论、自正则化极限理论、正态逼近、集中不等式等


四、主要成果和荣誉

主要论文:

[1] Fan, X., Grama, I. and Liu, Q., 2012. Hoeffding's inequality for supermartingales, Stochastic Process. Appl. 122, 3545--3559.  

[2] Fan, X., Grama, I. and Liu, Q., 2012. Large deviation exponential inequalities for supermartingales, Electron. Commun. Probab. 17, no. 59, 1--8.

[3] Fan, X., Grama, I. and Liu, Q., 2013. Cramer large deviation expansions for martingales under Bernstein's condition, Stochastic Process. Appl. 123, 3919--3942.  

[4] Fan, X., Grama, I. and Liu, Q., 2013. Sharp large deviations under Bernstein's condition, C. R. Acad. Sci. Paris, Ser. I. 351, 845--848.

[5] Chazottes, J.R., Cuny, C., Dedecker, J., Fan, X. and Lemler, S., 2014. Limit theorems and inequalities via martingale methods, ESAIM: Proceedings.44,177--196.

[6] Fan, X., Grama, I. and Liu, Q., 2014. A generalization of Cramer large deviations for martingales, C. R. Acad. Sci. Paris, Ser. I. 352, 853--858.

[7] Dedecker, J. and Fan, X., 2015. Deviation inequalities for separately Lipschitz functionals of iterated random functions, Stochastic Process. Appl. 125, 60--90.  

[8] Fan, X., Grama, I. and Liu, Q., 2015. Exponential inequalities for martingales with applications. Electron. J. Probab. 20,  no. 1, 1--22.

[9] Fan, X., Grama, I. and Liu, Q., 2015. Sharp large deviation results for sums of independent random variables. Sci. China Math. 58,  1939--1958.

[10] Fan, X., Grama, I. and Liu, Q., 2017. Non-uniform Berry-Esseen bounds for martingales with applications to statistical estimation. Statistics 51(1): 105--122.

[11] Fan, X., Grama, I. and Liu, Q., 2017. Deviation inequalities for martingales with applications. J. Math. Anal.  Appl. 448(1): 538--566.

[12] Fan X. 2017. Self-normalized deviation inequalities with application to t-statistic. Statist. Probab. Letters 127:  158--164.

[13] Fan, X., Grama, I. and Liu, Q., 2017. Martingale inequalities of type Dzhaparidze and van Zanten. Statistics. 51(6), 1200--1213.

[14] Fan, X., 2017. Sharp large deviation results for sums of bounded from above random variables. Sci. China Math. 60(12), 2465--2480.

[15] Fan, X., Shao, Q.M. 2018. Berry-Esseen bounds for self-normalized martingales. Comm. Math. Statist. 6(1): 13--27.

[16] Fan, X. 2019. Exact rates of convergence in some martingale central limit theorems. J. Math. Anal. Appl. 469(2). 1028--1044.

[17] Fan, X., Grama, I., Liu, Q., Shao, Q.M. 2019. Self-normalized Cramer type moderate deviations for martingales. Bernoulli 25(4A), 2793--2823.

[18] Fan, X., Wang, S. 2019. Bernst ein type inequalities for self-normalized martingales with applications. Statistics  53(2): 245--260.

[19] Fan, X., Levy-Vehel, J. 2019. Tempered Fractional Multistable Motion and Tempered Multifractional Stable Motion. ESAIM-Probab. Stat. 23, 37--67.

[20] Fan, X. 2019. Cramer-type moderate deviations for stationary sequences of bounded random variables. C. R. Acad. Sci. Paris, Ser. I. 357(5), 463--477.

[21] Alquier P., Doukhan P., Fan X. 2019. Exponential inequalities for nonstationary Markov chains. Dependence Modeling 7(1), 150--168.

[22] Dedecker, J., Doukhan P., Fan X. 2019. Deviation inequalities for separately Lipschitz functionals of composition of random functions. J. Math. Anal. Appl. 479(2), 1549--1568.  

[23] El Machkouri M., Fan X., Reding L. 2020. On the Nadaraya-Watson kernel regression estimator for irregularly spaced spatial data. J. Stat. Plann. Infer. 205, 92--114.

[24] Fan, X., Grama, I. and Liu, Q., 2020. Cramer moderate deviation expansion for martingales with one-sided Sakhanenko's condition and its applications. J. Theoret. Probab. 33, 749--787.

[25] Fan, X. 2020. Cramer type moderate deviations for self-normalized $\psi$-mixing sequences. J. Math. Anal.  Appl. 486(2): 123902.

[26] Fan, X., Grama, I., Liu, Q., Shao, Q.M. 2020. Self-normalized Cramer type moderate deviations for stationary sequences and applications. Stochastic Process. Appl. 130(8): 5124--5148.   

[27] Wu, S., Ma, X., Sang, H., Fan, X., 2020. A Berry-Esseen bound of order 1/sqrt{n} for martingales. C. R. Acad. Sci. Paris, Ser. I. 358(6): 701--712.

[28] Fan, X., Ma, X. 2020. On the Wassertein distance for a martingale central limit theorem. Statist. Probab. Letters 167. 108892.

[29] Hu, H., Froment, J., Wang, B., Fan, X. 2020. Spatial-frequency domain nonlocal total variation for image denoising. Inverse Probl. Imaging 14(6): 1157--1184.

[30] Fan, X., Hu, H., Liu, Q. 2020. Uniform Cramer moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment. Front. Math. China 15(5): 891--914

[31] Fan, X., Hu, H., Ma, X. 2021. Cramer moderate deviations for the elephant random walk. J. Stat. Mech. Theory E. 2021: 23402.

[32] Ma, X., El Machkouri M., Fan, X. 2022. On Wasserstein-1 distance in the central limit theorem for elephant random walk. J. Math. Phys. 63(1): 013301.

[33] Fan, X., Alquier, P., Doukhan, P. 2022. Deviation inequalities for stochastic approximation by averaging. Stochastic Process. Appl. 152(1), 452--485

[34] Doukhan, P., Fan, X., Gao, Z.Q. 2023. Cramer moderate deviations for a supercritical Galton-Watson process. Statist. Probab. Letters. 192, 109711

[35] Fan, X., Shao, Q.M. 2023. Self-normalized Cramér moderate deviations for a supercritical Galton-Watson process. J. Appl. Probab. 60(4), 1281--1292

[36] Deng, G.T., Fan, X., Gao, Z.Q., 2023. Asymptotic expansions in the local limit theorem for a branching Wiener process. Statist. Probab. Letters. 199, 109856.

[37] Fan, X., Hu, H., Wu, H., Ye, Y. 2023. Comparison on the criticality parameters for two supercritical branching processes in random environments. Acta Math. Sci.(in Chinese), 43A(5): 1440--1470.

[38] Wu, H., Gao, Z.Q., Ye, Y., Fan, X., 2023. Wasserstein-1 distance and nonuniform Berry-Esseen bound for a supercritical branching process in a random environment. J. Math. Research Appl. 43(6):737--753.

[39] Dedecker, J., Fan, X., Hu, H., Merlevede, F., 2023. Rates of convergence  in the central limit theorem for the elephant random walk with random step sizes. J. Statist. Phys. 190(10), 154.

[40] Fan, X., 2024. Sharp moderate and large deviations for sample quantiles. Statist. Probab. Letters. 205, 109951.

[41] Fan, X., Shao, Q.M. 2024+. Cramér's moderate deviations for martingales with applications. Ann. Inst. H. Poincaré Probab. Statist., to appear.

 

基金情况:

1) 基于重稳定过程的金融模型, 法国国家信息与自动化研究所, 2013.10-2015.8, 已结题.

2) 依时随机环境中的实值分枝随机游动的极限定理, 国家青年科学基金, 第二参与者, 2016.1-2018.12, 已结题.

3) 鞅的 Cramer 型大偏差展式及其应用, 国家青年科学基金, 主持者, 2017.1-2019.12,已结题.

4) 关于鞅的Berry-Esseen, 天津大学北洋学者, 主持者, 2018.1-2019.12, 已结题.

5) 分枝随机游动的极限理论, 国家自然科学基金面上, 第一参与者, 2020.1-2023.12, 在研.

6) 相依随机变量的自正则化极限理论及其应用国家自然科学基金面上, 主持, 2024.1-2027.12, 在研. 

 

荣誉及获奖:

2017获得天津市数学会青年学术奖一等奖”、天津大学北洋学者青年骨干教师。


五、主要社会团体兼职

2013年起担任美国数学会 Math. Reviews 评论员;

2017年起担任全国研究生教育评估监测专家;

20208-20228月,受邀担任数学杂志《Mathematics Letters》的编委;

202211-202411月,受邀担任数学杂志《World Journal of Mathematics and Statistics》的编委;

2022年起担任德国数学文摘zbMATH Open评论员;

2022年全国本科毕业论文(设计)抽检评审专家。

以下 SCI 杂志审稿人:《Bernoulli》;《Ann. Appl. Probab.》;《Stochastic Process. Appl.》;《Ann. Inst. H. Poincaré Probab. Statist.》;《Sci. China Math.》;《SIAM J. Scientific Computing》;《Electron. J. Probab.》;《J. Statist. Physics》;《J. Math. Anal. Appl.》;《Chaos, Solitons & Fractals》;《Comm. Statist. Theory Methods》;《Algorithmica》;《Statistics》;《Statist. Probab. Lett.》;《Frontiers Math. China》;《AIMS Math.》;《Statistica Neerlandica》;《Filomat》;《Lithuanian Math. J.》;《中国科学》


六、联系方式

  电子邮箱: fanxiequan@neuq.edu.cn, fanxiequan@126.com



上一条:【教师】马睿 下一条:【教师】陆瑶