应数教研室
当前位置: 首页 >> 师资队伍 >> 应数教研室 >> 正文
【教研室主任】刘松树
发布时间:2023-08-23 09:15   浏览:

刘松树

一、基本资料

      undefined 


19844月生,男,汉族,黑龙江省绥化市人,副教授,博士。

二、教育背景与工作经历

20029-20067月:哈尔滨师范大学,学士

20069-20097月:黑龙江大学,硕士

20103-20151月:哈尔滨工业大学,博士

20154月至今:东北大学秦皇岛分校,教师

三、主讲课程和研究方向

本科生课程:

线性代数,概率论与数理统计

研究方向:

偏微分方程反问题

四、主要成果和荣誉

主要论文:

[23] S.S. Liu, T. Liu, Q. Ma, On a backward problem for the Rayleigh-Stokes equation with a fractional derivative. Axioms, 13,30, 2024.

[22] S.S. Liu, Filter regularization method for inverse source problem of the Rayleigh-Stokes equation. Taiwanese Journal of Mathematics, 27(5), 847--861, 2023.

[21] S.S. Liu, Recovering a space-dependent source term in the fractional diffusion equation with the Riemann-Liouville derivative. Mathematics, 10(17): 3213, 2022.

[20] S.S. Liu, L.X. Feng, G.L. Zhang, An inverse source problem of space-fractional diffusion equation. Bulletin of the Malaysian Mathematical Sciences Society, 44(6): 4405--4424, 2021.

[19] S.S. Liu, F.Q. Sun, L.X. Feng, Regularization of inverse source problem for fractional diffusion equation with Riemann-Liouville derivative. Computational & Applied Mathematics, 40: 112, 2021.

[18] S.S. Liu, L.X. Feng, An inverse problem for a two-dimensional time-fractional sideways heat equation. Mathematical Problems in Engineering, 2020: 5865971, 2020.

[17] S.S. Liu, L.X. Feng, Filter regularization method for a time-fractional inverse advection-dispersion problem. Advances in Difference Equations, 2019: 222, 2019.

[16] S.S. Liu, L.X. Feng, A posteriori regularization parameter choice rule for a modified kernel method for a time-fractional inverse diffusion problem. Journal of Computational and Applied Mathematics, 353: 355--366, 2019.

[15] S.S. Liu, L.X. Feng, Optimal error bound and modified kernel method for a space-fractional backward diffusion problem. Advances in Difference Equations, 2018: 268, 2018.

[14] S.S. Liu, L.X. Feng, A revised Tikhonov regularization method for a Cauchy problem of two-dimensional heat conduction equation. Mathematical Problems in Engineering, 2018: 1216357, 2018.

[13] T. Liu, S.S. Liu, Identification of diffusion parameters in a non-linear convection-

diffusion equation using adaptive homotopy perturbation method. Inverse Problems in Science and Engineering, 26(4): 464--478, 2018.

[12] J.J. Zhao, S.S. Liu, An optimal filtering method for a time-fractional inverse advection-

dispersion problem. Journal of Inverse and Ill-posed Problems, 2016, 24(1): 51-58.

[11] J.J. Zhao, S.S. Liu, T. Liu, Determining surface heat flux for noncharacteristic Cauchy

problem for Laplace equation. Mathematics and Computers in Simulation, 2016 129:69-80.

[10] S.S. Liu, L.X. Feng, A modified kernel method for a time-fractional inverse diffusion

problem. Advances in Difference Equations, 2015, 342: 1-11.

[9] J.J. Zhao, S.S. Liu, T. Liu, A modified kernel method for solving Cauchy problem of

two-dimensional heat conduction equation. Advances in Applied Mathematics and Mechanics, 2015, 7(1): 31-42.

[8] J.J. Zhao, S.S. Liu, Central difference regularization method for inverse source problem

on the Poisson equation. Complex Variables and Elliptic Equations, 2015, 60(3): 405-415.

[7] J.J. Zhao, S.S. Liu, Two regularization methods for inverse source problem on the

Poisson equation. Complex Variables and Elliptic Equations, 2015, 60(10):1374-1391.

[6] J.J. Zhao, S.S. Liu, T. Liu, An inverse problem for space-fractional backward diffusion

problem. Mathematical Methods in the Applied Sciences, 2014, 37(8): 1147-1158.

[5] J.J. Zhao, S.S. Liu, T. Liu, A comparison of regularization methods for identifying

unknown source problem for the modified Helmholtz equation. Journal of Inverse and Ill-posed Problems, 2014, 22(2): 277-296.

[4] J.J. Zhao, S.S. Liu, T. Liu, A new regularization method for Cauchy problem of elliptic 

equation. Complex Variables and Elliptic Equations, 2014, 59(9): 1302-1314.

[3] J.J. Zhao, T. Liu, S.S. Liu, Identification of space-dependent permeability in nonlinear

diffusion equation from interior measurements using wavelet multiscale method. Inverse Problems in Science and Engineering, 2014, 22(4): 507-529.

[2] J.J. Zhao, S,S. Liu, T. Liu, Two Tikhonov-type regularization methods for inverse

source problem on the Poisson equation. Mathematical Methods in the Applied Sciences, 2013, 36(11): 1399-1408.

[1] J.J. Zhao, T. Liu, S.S. Liu, An adaptive homotopy method for permeability estimation

of a nonlinear diffusion equation. Inverse Problems in Science and Engineering, 2013, 21(4): 585-604.

主要项目:

[1] 两类分数阶扩散方程反问题的计算方法,河北省自然科学基金,负责人

[2] 分数阶扩散方程的两类反问题研究,中央高校基本科研业务费,负责人

[3] 两类时间分数阶扩散方程的反初值问题研究,中央高校基本科研业务费,负责人

[4] 分数阶Rayleigh-Stokes方程初值和源项反演问题的理论分析与算法研究,河北省高

等学校科学研究项目,负责人

[5] 几类偏微分方程不适定问题的正则化方法,校内科研基金,负责人

[6] 电磁学中某些散射和反散射数学问题的分析与计算国家自然科学基金参与人

[7] 半线性微分方程的数值理论及其应用国家自然科学基金参与人

主要著作:

  [1] 祁瑞生, 林秋, 刘松树著,随机发展方程数值方法,东北大学出版社,2019.

荣誉及获奖:

  [1] 2018年 学院年度优秀教工

  [2] 2019年 河北省高等学校青年教师教学比赛一等奖

  [3] 2020年 东北大学秦皇岛分校创新创业教育优秀指导教师

  [4] 2021年 东北大学秦皇岛分校创新创业教育优秀指导教师

  [5] 2022年 东北大学秦皇岛分校优秀工会积极分子

  [6] 2023年 东北大学秦皇岛分校优秀工会干部

五、主要社会团体兼职

SCI期刊《Axioms专刊Differential Equations and Inverse Problems”客座编辑。

六、联系方式

电子邮箱:liusongshu@neuq.edu.cn


上一条:【教师】邢媛媛 下一条:【教师】尚海锋