应数教研室
当前位置: 首页 >> 师资队伍 >> 应数教研室 >> 正文
【教研室主任】刘松树
发布时间:2023-08-23 09:15   浏览:

刘松树

一、基本资料

 


19844月生,男,汉族,黑龙江省绥化市人,副教授,理学博士,河北省工业与应用数学学会常务理事。

二、教育背景与工作经历

20029-20067月:哈尔滨师范大学,学士

20069-20097月:黑龙江大学,硕士

20103-20151月:哈尔滨工业大学,博士

20154-202212:东北大学秦皇岛分校讲师

20231月至今:东北大学,秦皇岛分校,副教授

三、主讲课程和研究方向

本科生课程:线性代数,概率论与数理统计

研究方向:偏微分方程反问题

四、主要成果和荣誉

主要论文:

[24] S. Liu, L. Feng, C. Liu, A fractional Tikhonov regularization method for identifying a time-independent source in the fractional Rayleigh-Stokes equation. Fractal and Fractional, 8, 601, 2024.

[23] S. Liu, T. Liu, Q. Ma, On a backward problem for the Rayleigh-Stokes equation with a fractional derivative. Axioms, 13,30, 2024.

[22] S. Liu, Filter regularization method for inverse source problem of the Rayleigh-Stokes equation. Taiwanese Journal of Mathematics, 27(5), 847--861, 2023.

[21] S. Liu, Recovering a space-dependent source term in the fractional diffusion equation with the Riemann-Liouville derivative. Mathematics, 10(17): 3213, 2022.

[20] S. Liu, L. Feng, G. Zhang, An inverse source problem of space-fractional diffusion equation. Bulletin of the Malaysian Mathematical Sciences Society, 44(6): 4405--4424, 2021.

[19] S. Liu, F. Sun, L. Feng, Regularization of inverse source problem for fractional diffusion equation with Riemann-Liouville derivative. Computational & Applied Mathematics, 40: 112, 2021.

[18] S. Liu, L. Feng, An inverse problem for a two-dimensional time-fractional sideways heat equation. Mathematical Problems in Engineering, 2020: 5865971, 2020.

[17] S. Liu, L. Feng, Filter regularization method for a time-fractional inverse advection-dispersion problem. Advances in Difference Equations, 2019: 222, 2019.

[16] S. Liu, L. Feng, A posteriori regularization parameter choice rule for a modified kernel method for a time-fractional inverse diffusion problem. Journal of Computational and Applied Mathematics, 353: 355--366, 2019.

[15] S. Liu, L. Feng, Optimal error bound and modified kernel method for a space-fractional backward diffusion problem. Advances in Difference Equations, 2018: 268, 2018.

[14] S. Liu, L. Feng, A revised Tikhonov regularization method for a Cauchy problem of two-dimensional heat conduction equation. Mathematical Problems in Engineering, 2018: 1216357, 2018.

[13] T. Liu, S. Liu, Identification of diffusion parameters in a non-linear convection-diffusion equation using adaptive homotopy perturbation method. Inverse Problems in Science and Engineering, 26(4): 464--478, 2018.

[12] J. Zhao, S. Liu, An optimal filtering method for a time-fractional inverse advection-dispersion problem. Journal of Inverse and Ill-posed Problems, 2016, 24(1): 51-58.

[11] J. Zhao, S. Liu, T. Liu, Determining surface heat flux for noncharacteristic Cauchy problem for Laplace equation. Mathematics and Computers in Simulation, 2016 129:69-80.

[10] S. Liu, L. Feng, A modified kernel method for a time-fractional inverse diffusion problem. Advances in Difference Equations, 2015, 342: 1-11.

[9] J. Zhao, S. Liu, T. Liu, A modified kernel method for solving Cauchy problem of two-dimensional heat conduction equation. Advances in Applied Mathematics and Mechanics, 2015, 7(1): 31-42.

[8] J. Zhao, S. Liu, Central difference regularization method for inverse source problem on the Poisson equation. Complex Variables and Elliptic Equations, 2015, 60(3): 405-415.

[7] J. Zhao, S. Liu, Two regularization methods for inverse source problem on the Poisson equation. Complex Variables and Elliptic Equations, 2015, 60(10):1374-1391.

[6] J. Zhao, S. Liu, T. Liu, An inverse problem for space-fractional backward diffusion problem. Mathematical Methods in the Applied Sciences, 2014, 37(8): 1147-1158.

[5] J. Zhao, S. Liu, T. Liu, A comparison of regularization methods for identifying unknown source problem for the modified Helmholtz equation. Journal of Inverse and Ill-posed Problems, 2014, 22(2): 277-296.

[4] J. Zhao, S. Liu, T. Liu, A new regularization method for Cauchy problem of elliptic equation. Complex Variables and Elliptic Equations, 2014, 59(9): 1302-1314.

[3] J. Zhao, T. Liu, S. Liu, Identification of space-dependent permeability in nonlinear diffusion equation from interior measurements using wavelet multiscale method. Inverse Problems in Science and Engineering, 2014, 22(4): 507-529.

[2] J. Zhao, S. Liu, T. Liu, Two Tikhonov-type regularization methods for inverse source problem on the Poisson equation. Mathematical Methods in the Applied Sciences, 2013, 36(11):1399-1408.

[1] J. Zhao, T. Liu, S. Liu, An adaptive homotopy method for permeability estimation of a nonlinear diffusion equation. Inverse Problems in Science and Engineering, 2013, 21(4): 585-604.

主要项目:

[1] 两类分数阶扩散方程反问题的计算方法,河北省自然科学基金,负责人

[2] 分数阶扩散方程的两类反问题研究,中央高校基本科研业务费,负责人

[3] 两类时间分数阶扩散方程的反初值问题研究,中央高校基本科研业务费,负责人

[4] 分数阶Rayleigh-Stokes方程初值和源项反演问题的理论分析与算法研究,河北省高等学校科学研究项目,负责人

[5] 几类偏微分方程不适定问题的正则化方法,校内科研基金,负责人

[6] 电磁学中某些散射和反散射数学问题的分析与计算,国家自然科学基金,参与人

[7] 半线性微分方程的数值理论及其应用,国家自然科学基金,参与人

主要著作:

[1] 祁瑞生, 林秋, 刘松树著,随机发展方程数值方法,东北大学出版社,2019.

[2] T. Liu, Q. Ma, S. Liu, Differential Equations and Inverse Problems, Multidisciplinary Digital Publishing Institute, 2025, https://www.mdpi.com/books/reprint/10510.

荣誉及获奖:

[1]  2018年,学院年度优秀教工。

[2]  2019年,河北省高等学校青年教师教学比赛一等奖。

[3]  2020年,东北大学秦皇岛分校创新创业教育优秀指导教师。

[4]  2021年,东北大学秦皇岛分校创新创业教育优秀指导教师。

[5]  2022年,东北大学秦皇岛分校工会积极分子。

[6]  2023年,东北大学秦皇岛分校优秀工会干部。

[7]  2024年,东北大学秦皇岛分校工会积极分子。

五、主要社会团体兼职

[1]  SCI期刊《Axioms》专刊“Differential Equations and Inverse Problems”客座编辑。

[2]  河北省工业与应用数学学会常务理事

六、联系方式

电子邮箱:liusongshu@neuq.edu.cn


上一条:【教师】邢媛媛 下一条:【教师】尚海锋