刘松树
一、基本资料
|
1984年4月生,男,汉族,黑龙江省绥化市人,副教授,博士。 |
二、教育背景与工作经历
2002年9月-2006年7月:哈尔滨师范大学,学士
2006年9月-2009年7月:黑龙江大学,硕士
2010年3月-2015年1月:哈尔滨工业大学,博士
2015年4月至今:东北大学秦皇岛分校,教师
三、主讲课程和研究方向
本科生课程:
线性代数,概率论与数理统计
研究方向:
偏微分方程反问题
四、主要成果和荣誉
主要论文:
[23] S.S. Liu, T. Liu, Q. Ma, On a backward problem for the Rayleigh-Stokes equation with a fractional derivative. Axioms, 13,30, 2024.
[22] S.S. Liu, Filter regularization method for inverse source problem of the Rayleigh-Stokes equation. Taiwanese Journal of Mathematics, 27(5), 847--861, 2023.
[21] S.S. Liu, Recovering a space-dependent source term in the fractional diffusion equation with the Riemann-Liouville derivative. Mathematics, 10(17): 3213, 2022.
[20] S.S. Liu, L.X. Feng, G.L. Zhang, An inverse source problem of space-fractional diffusion equation. Bulletin of the Malaysian Mathematical Sciences Society, 44(6): 4405--4424, 2021.
[19] S.S. Liu, F.Q. Sun, L.X. Feng, Regularization of inverse source problem for fractional diffusion equation with Riemann-Liouville derivative. Computational & Applied Mathematics, 40: 112, 2021.
[18] S.S. Liu, L.X. Feng, An inverse problem for a two-dimensional time-fractional sideways heat equation. Mathematical Problems in Engineering, 2020: 5865971, 2020.
[17] S.S. Liu, L.X. Feng, Filter regularization method for a time-fractional inverse advection-dispersion problem. Advances in Difference Equations, 2019: 222, 2019.
[16] S.S. Liu, L.X. Feng, A posteriori regularization parameter choice rule for a modified kernel method for a time-fractional inverse diffusion problem. Journal of Computational and Applied Mathematics, 353: 355--366, 2019.
[15] S.S. Liu, L.X. Feng, Optimal error bound and modified kernel method for a space-fractional backward diffusion problem. Advances in Difference Equations, 2018: 268, 2018.
[14] S.S. Liu, L.X. Feng, A revised Tikhonov regularization method for a Cauchy problem of two-dimensional heat conduction equation. Mathematical Problems in Engineering, 2018: 1216357, 2018.
[13] T. Liu, S.S. Liu, Identification of diffusion parameters in a non-linear convection-
diffusion equation using adaptive homotopy perturbation method. Inverse Problems in Science and Engineering, 26(4): 464--478, 2018.
[12] J.J. Zhao, S.S. Liu, An optimal filtering method for a time-fractional inverse advection-
dispersion problem. Journal of Inverse and Ill-posed Problems, 2016, 24(1): 51-58.
[11] J.J. Zhao, S.S. Liu, T. Liu, Determining surface heat flux for noncharacteristic Cauchy
problem for Laplace equation. Mathematics and Computers in Simulation, 2016 129:69-80.
[10] S.S. Liu, L.X. Feng, A modified kernel method for a time-fractional inverse diffusion
problem. Advances in Difference Equations, 2015, 342: 1-11.
[9] J.J. Zhao, S.S. Liu, T. Liu, A modified kernel method for solving Cauchy problem of
two-dimensional heat conduction equation. Advances in Applied Mathematics and Mechanics, 2015, 7(1): 31-42.
[8] J.J. Zhao, S.S. Liu, Central difference regularization method for inverse source problem
on the Poisson equation. Complex Variables and Elliptic Equations, 2015, 60(3): 405-415.
[7] J.J. Zhao, S.S. Liu, Two regularization methods for inverse source problem on the
Poisson equation. Complex Variables and Elliptic Equations, 2015, 60(10):1374-1391.
[6] J.J. Zhao, S.S. Liu, T. Liu, An inverse problem for space-fractional backward diffusion
problem. Mathematical Methods in the Applied Sciences, 2014, 37(8): 1147-1158.
[5] J.J. Zhao, S.S. Liu, T. Liu, A comparison of regularization methods for identifying
unknown source problem for the modified Helmholtz equation. Journal of Inverse and Ill-posed Problems, 2014, 22(2): 277-296.
[4] J.J. Zhao, S.S. Liu, T. Liu, A new regularization method for Cauchy problem of elliptic
equation. Complex Variables and Elliptic Equations, 2014, 59(9): 1302-1314.
[3] J.J. Zhao, T. Liu, S.S. Liu, Identification of space-dependent permeability in nonlinear
diffusion equation from interior measurements using wavelet multiscale method. Inverse Problems in Science and Engineering, 2014, 22(4): 507-529.
[2] J.J. Zhao, S,S. Liu, T. Liu, Two Tikhonov-type regularization methods for inverse
source problem on the Poisson equation. Mathematical Methods in the Applied Sciences, 2013, 36(11): 1399-1408.
[1] J.J. Zhao, T. Liu, S.S. Liu, An adaptive homotopy method for permeability estimation
of a nonlinear diffusion equation. Inverse Problems in Science and Engineering, 2013, 21(4): 585-604.
主要项目:
[1] 两类分数阶扩散方程反问题的计算方法,河北省自然科学基金,负责人
[2] 分数阶扩散方程的两类反问题研究,中央高校基本科研业务费,负责人
[3] 两类时间分数阶扩散方程的反初值问题研究,中央高校基本科研业务费,负责人
[4] 分数阶Rayleigh-Stokes方程初值和源项反演问题的理论分析与算法研究,河北省高
等学校科学研究项目,负责人
[5] 几类偏微分方程不适定问题的正则化方法,校内科研基金,负责人
[6] 电磁学中某些散射和反散射数学问题的分析与计算,国家自然科学基金,参与人
[7] 半线性微分方程的数值理论及其应用,国家自然科学基金,参与人
主要著作:
[1] 祁瑞生, 林秋, 刘松树著,随机发展方程数值方法,东北大学出版社,2019.
荣誉及获奖:
[1] 2018年 学院年度优秀教工
[2] 2019年 河北省高等学校青年教师教学比赛一等奖
[3] 2020年 东北大学秦皇岛分校创新创业教育优秀指导教师
[4] 2021年 东北大学秦皇岛分校创新创业教育优秀指导教师
[5] 2022年 东北大学秦皇岛分校优秀工会积极分子
[6] 2023年 东北大学秦皇岛分校优秀工会干部
五、主要社会团体兼职
SCI期刊《Axioms》专刊“Differential Equations and Inverse Problems”客座编辑。
六、联系方式
电子邮箱:liusongshu@neuq.edu.cn