报告人: 潘琼琼(温州大学)
报告题目:(p,q,t)-Catalan continued fractions, gamma expansions and pattern avoidances
报告摘要:We introduce a kind of $(p, q, t)$-Catalan numbers of Type A by generalizing the Jacobian type continued fraction formula, we proved that the corresponding expansions could be expressed by the polynomials counting permutations on $\mathfrak{S}_n(321)$ by various descent statistics. Moreover, we introduce a kind of $(p, q, t)$-Catalan numbers of Type B by generalizing the Jacobian type continued fraction formula, we proved that the Taylor coefficients and their $\gamma$-coefficients could be expressed by the polynomials counting permutations on $\mathfrak{S}_n(3124, 4123, 3142, 4132)$ by various descent statistics. Our methods include permutation enumeration techniques involving variations of bijections from permutation patterns to labeled Motzkin paths and modified Foata-Strehl action.
报告时间:2023年4月8日(周六)上午10:00-11:00
报告地点:腾讯会议587-624-294
报告人简介: 潘琼琼,2020年博士毕业于法国里昂大学,导师是曾江教授。2021年入职温州大学。主要研究计数组合学、代数组合学以及正交多项式理论。多篇论文发表在JCTA、AAM、EJC等组合数学领域的权威国际期刊上。
报告邀请人:数学与统计学院 马世美